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\
\ Abstract

A new method for the computation of electromagnetic scattering from arbitrary two-

dimensional bodies is presented. The method combines the finite element and boundary

element methods leading to a system for solution via the .Conjugate (_radient FFT_al-

gorithm. Two forms of boundaries aimed at reducing the storage requirement of the

boundary integral are investigated. It is shown that the boundary integral becomes con-

volutional when a circular enclosure is chosen, resulting in reduced storage requirement

when the system is solved via the Conjugate Gradient FFT method. The same holds for

the ogival enclosure, except that some of the boundary integrals are not convolutional

and must be carefully treated to maintain the O(N) memory requirement. Results for

several circular and ogival structures are presented and shown to be in excellent agree-

ment with those obtained by traditional methods.
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Chapter 1

Introduction

Many methods exist for the numerical solution of two-dimensional (2-D) scattering

problems. Moment methods have traditionally dominated the frequency domain solu-

tion approaches though more recently, hybrid finite element methods have gained much

popularity. The relative simplicity in treating complex arbitrary composite structures

is a major reason for this. Also, the resulting system of equations in a finite element

implementation is sparse and banded leading to a low (O(N)) storage required for large

scale applications.

To formulate the hybrid finite element method for scattering computations, the struc-

ture is enclosed in a ficticious boundary. Within the boundary, the finite element method

is used to solve a weak representation of the Helmholtz equation and further, to satisfy

the radiation condition, an approximate absorbing boundary condition (ABC) [1] may

be placed on the ficticious boundary. The ABC's are popular because they result in

a banded sub-matrix structure. However, they require additional unknowns since the

enclosure must be placed at a distance approximating the far field region. An alternative

to the ABCs is to match the fields within the enclosure to an eigenfunction expansion



(unimomentmethod) [2] or to employthe boundaryintegral equation[3, 4, 6]. The

unimomentmethodproducesa densesquaresub-matrixwith dimensionproportionalto

the numberof modes.It alsorequiresthe truncationof an infinite serieswhichmaybe

slowlyconvergentfor irregularstructuresthusresultingin a largestoragerequirement.

Previously,the authorsintroduceda method[6] whichresultedin an O(N) storage

requirement. By choosing a rectangular ficticious boundary, some of the integrals in

the boundary integral equation become convolutions amenable to evaluation via the fast

Fourier transform (FFT). Provided the conjugate gradient (CG) algorithm is used for

the solution of the system, the discretization and evaluation of the convolution integrals

requires only O(N) storage (while the remaining "cross-terms" must be stored in an

efficient manner). Another important feature is that the order of the FFT need only

be applied on the ficticious boundary making it preferable to the traditional CGFFT

method, which requires the evaluation of FFTs that have the same dimensionality as

that of the structure.

It is possible to choose other boundaries that result in convolutional integrals, and in

this report we consider circular and ogival enclosures. Clearly, a circular enclosure would

be attractive for circular scatterers whereas an ogival boundary will be more attractive

for those structures conforming to this boundary. In the case of the circular boundary

the entire integral is convolutional ensuring the O(N) memory demand of the system

provided an iterative solution is used. When an ogival enclosure is used the integral

becomes convolutional only if the observation and source points are on the same arc, but

an efficient storage scheme is again required for the remaining "cross-terms" 1

"cross terms" refer to integrals for which the source and observation points are not on the same arc
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The hybrid finite elementmethodspresentedhereinwill be referredto asthe com-

bined finite element-boundaryelementmethods(BE/FE-CGFFT), becausethe source

and observationpointsassociatedwith the boundaryintegral sharea commoncontour

as is the casewith the traditional boundaryelementmethod[8]. In contrast,for the

combinedfinite element- boundaryintegralformulation(FF_,-CGFFT)discussedin [6]

the sourceandobservationpointsareon adjacentcontours.This choiceof a singleor

doublecontouris, of course,arbitrary andonly for conveniencesincein either case,the

samenumberof unknownsare requiredfor either case.

In the followingsections,the pertinentBE/FE-CGFFT formulationsaredeveloped

for the circularandogivalboundaries.Resultsfor severalcircularandogivalstructures

arepresentedandshownto be in excellentagreementwith that obtainedby traditional

methods.



Chapter 2

Analysis

Consider the plane wave 1

(2.1)

illuminating a composite cylinder as shown in Fig. 2.1 and we are interested in computing

the scattered field. For the application of the Finite Element - Boundary Element Method

the target is enclosed in a ficticious circular or ogival boundary as shown in Figs. 2.2 and

2.3. Within the boundary Fa, the finite element method is used to solve the Helmholtz

equation

v. [v(_)v¢(_)] + k_v(_)¢(_) = 0 (2.2)

where

1

¢(_) =Ez(_), u(_) - _r(_) v(_) = er(_) (2.3)

for E-polarization and

¢(_) =_z(_),
1

,(_) = ,,_,,._pj _(_) = ,.(_) (2.4)

_An e_'_t time convention is assumed and suppressed.
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Figure 2.1: Geometry of the scatterer



for H-polarization. The free-space wave number is ko = wpvffi'_oeoand #_ and er are the

relative permeablility and permittivlty, respectively. On the boundary F, the Helmholtz

integral equation

provides the required boundary constraint, implicitly satisfing the radiation condition•

In (2.5)

G('fi,-fi_) = -4 H(2)(koFfi - P_I) (2.6)

is the 2-D free space Green's function where H(2}(.) denotes the zeroth order Hankel

function of the second kind. Also, _° denotes differentiation with respect to the outward

normal, whereas _ and _ are the usual source and observation points, respectively, and

IP - P_I = _/(x - x_) 2 + (y - y_)_ (2.7)

6
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A J

Figure 2.2: Partially discretized body in a circular enclosure

2.1 Case 1: Circular Enclosure

2.1.1 Discretization of the Scatterer and Field Quantities

The region enclosed by F_, denoted as Ra, is discretized into Ne finite elements as

illustrated in Fig. 2.2. In the figure, Pa is the radius of the circle and aa is the integration

angle along this boundary (Further definitions for the finite element mesh are indicated

in Table 2.1, while the definitions of the field vectors are indicated in Table 2.2.). We

note that nodes along ra are equispaced with angular displacement A.

2.1.2 Derivation of the Finite Element Matrix

The weighted residual expression over each element may be written [9]

/Rf_,N_dft _ = 0 i = 1,2, 3 (2.8)

f_



Definitionsfor Finite ElementMesh

N,_ = total number of nodes in the finite element mesh

Ng = total number of unknowns

N_ = total number of eler_ ents in the finite element mesh

Na = number of nodes or elements on F_

Nd = number of nodes or elements on Fd

Table 2.1: Definitions for the finite element mesh

Definitions of Field Vectors (in terms of field unknowns at nodal points)

¢_ = fields at the nodes on F_

_b_ = normal field derivatives at the nodes on ['_

¢1 = fields corresponding to region I enclosed by F_ and Fd

Cd = fields at the nodes on Fd, the conductor boundary

Table 2.2: Definitions of the field vectors



where

and

y)] - ko_v(_,y)$o(_,y) (2.9)

N_

__$=T:$ o (2.10)
e:l

where _e is zero outside element e. In (2.9) _e is an approximation to ¢ in the eth

element, and N,e is the ith shape function associated with the eth element. Substituting

(2.9) into (2.8) and invoking the divergence theorem yields

a e -u[ox Ox + Oy Oy J +k_)vCeN: df_e

+fr Ni_edI'e=0 (2.11)

where r _ denotes the contour enclosing the eth element. Additionally,

On (2.12)

is zero outside element e. Summing over N_ elements we obtain

f f + +kgv #eN:
_=lf_ [ Oz Oz Oy Oy ]

N,. N,,

N i g' dF a + __, N:_'aFI 0 (2.13)
s=l g s=l

where the summations over s refer to the elements with sides adjacent to the ficticious

(F_) and conducting (rd) boundaries. The integral over the conducting boundary van-

ishes and if no conductor is present, then Fd is not present. When ¢ = H_, the normal

derivative of the field is zero on the conductor and the field unknowns on the boundary



are allowedto "float" (i.e., the boundary condition is "naturally" satisfied). Finally,

when ¢ = Ez, imposing the Dirichlet condition during assembly of the finite element

system results in the elimination of those equations associated with the integral over Fd.

Proceeding with the discretization, the field and its derivative within each element

may be expanded into a linear combination of shape functions

3

¢_ = _ .,_]_¢_ (2.14)
j=l

3

_)s = E s - sNZ¢_ (2.15)
k---I

Substituting (2.14) and (2.15) into (2.11) we obtain

3 3

- b_k¢ k 0
j=l k:l

where

(2.16)

+ Oy Oy J
d_2e (2.17)

and

fr NkN_ dF=b_= " _
l

(2.18)

For linear triangular elements, N_ are given by

i_ = _5;(a_ + bT_+ cTy) (2.19)

with

1
f_e = - det

2

1 x_ y_

1 x i Yl

1 x_ y_

= _(b;cj- b;_7) (2.20)

10



o o o _ o (2.21)a i = xjy k -- xky j

e eb_ = yj - y_ (2.22)

c7 = =_- =; (2.23)

and (x,¢, y_) being the coordinates of the ith node of the eth element. From (2.19)

toN? b_
- (2.24)

Oz 2fl _

ON? _ _k (2.25)
tOy 212_

Using (2.24), (2.25) and the identity

Is P!q! (2.26)N_ )V(N_ )qdxdy 2_°(p+ q+ 2)!

aij in (2.17) reduces to

a,j_= u°_h%_4_""-'" + c_;) - k2"°--(112+ _'j) (2.27)

where

lifi=j
_i = (2.2s)

0 otherwise

We note that in deriving (2.27) we have assumed that u and v (the reciprocal of the

material constitutive parameters) are constant within each element and are given by u _

and v ', respectively.

To find an algebraic expression for b_k, we may reparametize the integral in (2.18) as

cq +&bi_ = Pi'P_:r, da (2.29)
1

11



whereP_ and P_ are given by

Integrating, we have

P_'(a) = 1 a - c_I (2.30)

p_(_) _ c_- a{ (2.31)
,_ - ,_I

r_A .//
b_ = --T- ( _k+ 1) (2.32)

Substituting the previous equations into (2.13) a sparse matrix is obtained for the

nodal fields that has the form

Aaa AaI 0 - Baa

A1;a AH Aid 0

0 Adl Add 0

0 0 0 0

¢I

¢d

0

0

0

0

(2.33)

In this, the values of the elements in the submatrix Apq are the contributions associated

with the nodes in group (region or boundary) p which are connected directly to the nodes

in group q. Also,

N. ra A
[Baalik = Z b_k = -"_"(8i-i,k + 46ik +/fi+,,k) (2.34)

The last row in (2.33) has been intentionally left blank to imply a need for another set

of equations relating the fields and its derivatives on Fa. This additional set of equations

is produced by discretizing the boundary integral equation.

12



The last row in (2.33)hasbeenintentionallyleft blank to imply a needfor anotherset

of equationsrelatingthefieldsandits derivativesonF_.This additionalsetof equations

is producedby discretizingthe boundaryintegralequation.

2.1.3 Evaluation of the Boundary Integral

The boundaryintegral in (2.5)maybe rewritten in cylindricalcoordinatesvia the

transformations

IF- _°1 = IS_(pcosa - p.cosc_.)- _t(psina - p,,sinc_=)[

= X/p_+ p_- 2ppocos(,,- _o) (2.35)

where (p,a) and (p=,a=) are the usual source and observation points in cylindrical co-

ordinates.For Ipl--Iml,

I_- _,_1= 2pIsin(_-q-_)l (2.36)

and the Green's function and its normal derivative may be written as

a(_,_) = -JHo (2)(2kop.sin (_5-_))
4

0 G', " Jk°H(2)(2kop,,sin(a-=_))sin(._--r_)
(P_.) _ -_ ,

We may now write (2.5) as [8]

_¢(p,a) = - fo(p,a)+ If(p,a)¢_.C(p,_)

where as a result of (2.37) and (2.38)

• 2_r

fo(p, ,_) = -]_p_ /o ¢(P"'°t_')H(2) (2k°p" sin ('a=_ )) dc_

(2.37)

(2.38)

(2.39)

(2.40)

13



with

j /2. _)fl(p,a) = 7p_ o ¢(p_,a_)H[ (2kop_,sin(_-_-,l))sin(Z:_)da_ (2.41)

= (2.42)

The factor of } in (2.39) accounts for the singularity associated with H_2)(.) and the 9c

in (2.40) and (2.41) denotes principle value.

We may now discretize (2.40) by expanding the field using pulse basis functions as

N,

¢(p_, c_) _ _ P:,(c_ - aj)¢j (2.43)
j=l

where

1
Pa(a_ - aj) = - 2 (2.44)

0 otherwise

and A is the angular width of the integration cell as indicated in Fig. 2.2. Thus, the

discrete version of (2.40) may be written as

fo(p,a) = _JP.......A_ @ T H(2) (2kop_,sin(a=._))da_, (2.45)
4 ___,__j=l

Performing point collocation and letting u' = a - _, we have

fo(p, cq) = jp,, N,, f(,_,-o,,)+_ ,.,----4--_'_l,j 4- H_'i(2kopasin(_-))du' (2.46)

which may be written in compact form as

fo(P, ai) = jp_, N_
---4- E 5jho(oi - aj) (2.47)

j=l

where

ho(cti - ot.i) = H (2)(2kopa sin (7)) du (2.48)
_. oJ(c,, -c,j )- 2

14



It is clearthat (2.47)is in the formof adiscreteconvoIuti0nandcanthUSbewritten as

fo(p,a) = DFT-' {DFT(_b). DFT(ho)} (2.49)

where the elements of h0 are given by

{ [,n( -
:(p-½),,

(2.50)

and 7 -_ 1.781 [10]. Through a similar analysis, the field may be approximated by the

expansion

N_

¢(pa,aa) _-- E Ph(aa - aj)$.i (2.51)
j=l

and by substutiting this into (2.41), we obtain

__N_A(P, ai) = j _--_Cjhx(ai - aj)
j=l

(2.52)

where

hi(a,-aj) = /(_"-%)+_ H_ _) (2kop, sin(_))sin(_)du'
J(,,,-_)-_

(2.53)

Clearly, (2.52) may again be written in operator form as

fl(p,a) = DFT -1 (DFT(dp). DFT(hl)} (2.54)

where

hl(pA) = {

1¢ko Pa

f,p+_)a H_2, (2kop_, sin (-_))sin (-_) du'(p-_)÷

Point matching (2.39) at each node results in the system

p=O

p=l,...,N°-I
(2.55)

(2.56)

15



whichmaybewritten in operatorform as

(2.57)

where

[L_a]ij - JPaho(ai - aj)
4

l_.. jpak°hl(a i - aj)[Maa]ij = _ ,, 4

(2.5s)

(2.59)

A final system is obtained by combining (2.57) with (2.33) to yield

Aaa Aai 0 - Baa

Ata Alt Ata 0

0 Adt Aad 0

Maa 0 0 -La_

¢,, 0

¢, 0

Ca 0

¢o

(2.60)

which can be solved via the conjugate gradient algorithm to obtain the nodal fields.

16



Definitionsfor Finite ElementMesh

N,_ = total number of nodes in the finite element mesh

Ng = total number of unknowns

N_ = total number of elements in the finite element mesh

N_ = N_1 ÷ N_2 = number of nodes on F_

r_ = ral ÷ ra2

L

Table 2.3: Definitions for the finite element mesh

2.2 Case 2: Ogival Enclosure

2.2.1 Discretization of the Scatterer and Field Quantities

The region within ra, denoted Ra, is discretized into N_ finite elements and a partial

discretizatio, i3 shown in Fig. 2.3 for the circular case. In Fig. 2.3,

Ap = angular displacement between nodes on rap

pap = radii of rap

aap = angular integration variable along r_

t = distance between centers of curvature of Fop

Ycp = y-coordinate of the center of curvature of F_p

Further definitions for the finite element mesh are indicated in Table 2.3, and the field

vector definitions are indicated in Table 2.4.

17
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Figure 2.3: Partially discretized body with an ogival enclosure

Definitions of Field Vectors (in terms of field unknowns at nodal points)

¢_p = fields corresponding to the nodes on F_, p = 1,2

¢_p = fields corresponding to the midpoints of the nodes on F_

_ = fields at the nodal midpoints on F_

¢1 = fields corresponding to region I enclosed by F_ and rd

Cd = fie!_!s corresponding to the nodes on the Fa

Table 2.4: Definitions of the field vectors

18



2.2.2 Derivation of the Finite Element Matrix

The derivationof the finite elementmatrix followsthat describedin section2.1.1

with the exceptionof the matrix Ba_. Consider the ogival boundary as indicated in fig.

2.3. The boundary contour F_ is comprised of two arcs labeled F_ 1 and Fa_, which form

the vertices of the ogive where they meet. At the vertices the unknown normal field is

discontinuous and will therefore be evaluated at the midpoint. Also, in evaluating the

contour integral, the field derivative will be expanded in terms of pulse basis functions,

rather than linear functions. This results in a different Ban matrix and involves the

replacement of P_ in (2.29) by the pulse basis function expansion

1 ifO<]a-aj]< A
PA(ct - aj) = - - 2 (2.61)

0 otherwise

By integrating in cylindrical coordinates we then obt_n

bi_ = -_(ifii + _i,j+l), j = 1, i= 1,2 (2.62)

where Ie is the length of the eth boundary element along Fa and is equal to PapAp for

Fap, p = 1, 2. Performing a summation over all boundary elements then yields

N, [j

[Baa]ij = Y_ biej = "_(ifij + 6i,j+l) (2.63)
e----1

where Ij is the length of the jth element since the jth "node" (associated with the

unknown Cj) is at the center of the jth boundary element.

The remainder of finite element analysis for this case proceeds exactly as in section

2.1.2.

19



2.2.3 Evaluation of the Boundary Integral

The evaluation of the boundary integral along an ogival contour is similar to that

described for the circular boundary. For integration and observation points on the sazne

arc, the integrals become convolutions. On the other hand, when the integration and

observation points reside on different contours, the integrals have no special form and

must be discretized and stored in m_mory as efficiently as possible.

The distance between the source and observation points in terms of cylindrical coor-

dinates for points on the same arc is given by

- I= + - 2pp_p cos(a - sap) p = 1,2 (2.64)

When the source and observation points are along different arcs, (2.64) becomes

[_q - _ [ = _/(p cos c_q - p_ cos a_p) 2 + (p sin _q - p_ sin a,_ + Ycq - y_)2

,,q = 1,2 (2.62)

in which the subscript ap refers to the integration coordinates along contour p and the

subscript q refers to the observation coordinates. Also, y_ is the y-coordinate of the

center of curvature for contour p for p = 1,2. For further reference we note that (2.65)

may be also rewritten as

1

where t = y_ - Ycl.

- 2p_p_ 2 cos(o, - c_ 2 ) + t 2 T 2t(pl sinol - P_2 sino_ ) (2.66)
2 1 2 1 2 2 1 1

2O



To discretize(2.5),thefieldsareexpandedas

N,,1 N.

¢(p_,ac`) __ _ PA(aa - aj)(oj + __, Pa(a_, - aj)_oj
j=l j=N,,, +1

(2.67)

N.1 N_

j=l j=Na, +1

where as before

and

f 1

Pa(oc -̀ _s) =
( 0

-- 2

otherwise

(2.68)

(2.69)

_j = _(¢j -{- _j+l)
(2.70)

Substutiting (2.67), (2.68) and (2.69) into (2.5) then yields

1¢(p1,_) ¢_"_(p1,_1){_Sj_(o,+A,= - Go(P1, Pc`a,al - a,,_ )pc`, dac`,
j=l ._ oj

N. taj + A_

T E 6j t G°(Pl'Pc`_'al'°t'2)P_2dac`_
j=Na 1 +1 .,'aj

Na 1

_ o
_p_Go(pl, p.,, al - ac`, )pc,, dac`x

j=l @(:_j

- _ _oj Opc`2Go(p,,pc`2,al,ac,2)p_2dac`_
j=NG I +1 ,, a,

when the observation point is on F_ and

(Naj_ 1 /o 2 +A1
lgb(p2,02) = ¢inc(p2, 0_2) -- _j Go(p2,pc`l ,o2,ac`l )Pc`l doc`,

+ _ _bj Go(p2,pa2,a2- aa2)pa_daa_
j=Na, +1 "a-1

(2.71)

21



No, _,+_ 0
- _ _' " ap_,Go(P2, P_,, C_2,0% )Pa, daa,

N'_ /o'' +A2 0 }- _ _J o_ ao(p_,po_,_- _o_)p_d_o_ (2.72)
j=Na I +1 "%

for observation on F_ 2. Performing point collocation at the nodal midpoints, (2.71) and

(2.72) further reduce to

{N_'j_1 r_,-,_J+__¢(pl,Oi+½) = ¢inc(pl,Oti+ka ) -- _j 4" Go(Pl,pa,,u)p_,du
.= J_,,-,_,+_

N_ /%+Aa+ ___ Ca Go(pl,P_,2,ai+½,a,_)P_2da_,2
j=Na 1 +1 " a1

Nat fal-aj +_ 0

j=Na,+l ,,a, 0 aG°(Pl'Paa'ai+_'v%)p_2da_a (2.ra)

for observation on F_ 1 and

2¢(P='ai+½) = ¢inC(P"Cq+')- { _l_bJ /_'+a'G°(p2'Pa"ai+½'a'_')Pa'daa'.=,,%

Na /ai_c,.i + &a
+ _ _a_,_,,,+÷Go(P',Po=,u)P_2 du

j=Na I +1

N"l _/a.1 +'% 0

5--'--1

- __, i_j.,_,__,,+_Opo=Oo(m,p=,,u)po, du (2.74)
j=Na 1 +1

where the ' 1, in the subscript refers to the ficticious "node" midway between the actual

nodes. A system of equations can now be obtained by testing (2.73) and (2.74) at a

sequence of points on the contours. This yields

_C, (/)al 'rtC { 1 1 6 }= _o=, - Lla¢=, -t- P12_ba2 - _MllClCa, - :_O12 2¢a2

22



which can be alternatively written as

] LnD

P_,

Q21CICal - 1M

Cal

¢a2

_)al

¢02

(2.75)

(2.76)

In this C is a matrix with l's down the main and super diagonals, and _o_'_e are the value

of the incident field evaluated at the nodal midpoints. The matrix D accounts for the

double use of the nodes at the endpoints and the remaining elements are given by

1 1

.M m, = _(_I- Mpp) (2.77)

1 (2.78)Qpq = -_Q_

(2.79)

for p = 1,2 in which

and

0

_p_qGo(pv, P_,, ai+_, a,_q)p_, da_q

(2.80)

(2.81)

(2.82)

(2.83)
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Moreexplicitly,uponevaluationof the integrals

{ j k°-z£2x-[kop_ t_-z - sin __.z_ + __J.__]

4 L px 2 2 ) rkop,,pJ

[Mpv]ij =
;_____ ra,-_J + 2 _(2)(ot. ,_ _in-U_s;- _du

"_{1 "' [ln('_k°°_ eAp) 1]_ i j
[Lvv]iJ = -3 _ -37 -_, =

-i'_ r"'-°_+_2"_//(2)(2kop,_p sin _)du i 7t i
%-.,+_-

i=j

i#j

(2.84)

(2.85)

ko,o t4 )(ko

Pa2 /..+n_ H(2)(ko_ " =Ft')daa2: -s-2-,o,

(2.86)

(2.87)

where the upper sign corresponds to the upper set of subscripts on P or Q, while the

lower sign corresponts to the lower set of subscripts. Introducing the definitions

gl

F

= ] MnC1 Q12C2

[ Q_IC1 M_2C_

(2.88)

g 2 (2.89)

the system (2.76) may be combined with that derived via the finite element method to

obtain

A_a Aal 0 - Baa

At_ Art Aid 0

0 Aat Add 0

K1 0 0 K2

(_

Ct

0

(2.90)

24



Wenote that (2.90)canbesolvedvia the CG algorithmto takeadvantageof the con-

volutionoperatorsM and L in reducing the memory requirements. This algorithm is

given next.
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2.3 A CGFFT Algorithm

The CG algorithm to be employed for solving a system of the form

as in (2.60) and (2.90) is as follows:

Initialize the residual and search vectors

A¢= b

Iterate for k = 1, ..., Ng

_b = It[¢inc

s = A¢ (°)

r 0) = b- s

s = Aar (1)

d(0) __ ,_-1

0 0 0 ]r ii._=lI b tl]

p(1) = _(0)8

s = Ap (k)

% = II_ 115

a(k) = 7[ 1

¢(k+1) = ¢p(k) + a(k)p(k)

r(k+ 1) = r (k) _ a(k)p(k)

7_ = II,.(k+,)ll_

26

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)



s = Aar (k+l)

% = II_ III

p(k+x) = p(k) + fl(k)s(k )

Terminate when k = Ng or _ < tolerance.

(2.104)

(2.105)

(2.106)

(2.107)

{_}= (_s,}+ {SrE}. (2.1o8)

where

{SBI } =

and

{SFE } =

0

0

0 00 0

0 0 0 0

0 0 0 0

KI O O K2

Aaa AaI 0

Az,_ AH Aid

0 Add

3 0

For the adjoint operations, we have

{SBI} --

O00K_

000 0

000 0

000K_

1F
B,_,_ [' zl

0 Z2

|

0 z3

0 Z 4 [

I

I
z2 [

I

'_3 t
I

-. ]

(2.109)

(2.110)

(2.111)
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and

{SFE } :

A_ A_ o o

A_ Ab A_ 0

0 A_x A_d 0

B_ 0 0 0

Zl

Z2

Z3

Z4

(2.!12)

In each case, the operation is performed such that only the resulting vector {s} needs

to be stored.
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Chapter 3

Scattered Field Computation

In this section the expressions for the scattered field and radar cross-section are

developed for both the circular and ogival boundaries.

computed from the identity

and the echowidth is then found from

_, I¢'12
a = p--,_limz_rP]_2

The scattered fields may be

(3.1)

(3.2)
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3.1 Circular Boundary

The scattered field expression (3.1) may be written as

¢'(p,a) = -f0(p, a) + A(p,a) (3.3)

where

J fO2_fo(p, a ) = -'_ p.

and

(3.4)

A(p,,_) =
7

f
_pokoJo _("°"_°) ,/._ +._- 2.pocos(,_-_o) (p. - pcos(a - a.)) da.(3.5)

To evaluate the integrals in (3.4) and (3.5) we invoke the field expansions (2.43) and

(2.51). We have

and

(3.6)

A(p,_) =

• _o fo,÷_-_)(ko,/_+_- 2._o_o_(_-_o))
_kopoE _Jjo,__ 7P ¥?_--77.:_(-;- ;o-_

j=l

(p_ - pcos(a - a_)) da_(3.7)

where the remaining integrals over the subsections must be evaluated numerically for ar-

bitrary observation. However, for far-field computations (p ---*_), the Hankel functions

may be approximated as

H(n_)(kp ) ,,_ ,f 2j j,_e_ik ,V_ (3.8)
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and since

_/p_+ p_- 2pro¢os(_- _) __{

for amplitude

for phase terms

(3.9)

(3.6) and (3.7) become

n_A_ N_

fo(p,a) = --jC--_- I -" e-J_P
j=l

(3.10)

and

. N.
pokoA/" 23 e_jk0.X'-"5j cos(_,- _.AeJ_.-°°'("-°,)

:'("'°)= : V-:oT : (3.ii)

Substutiting (3.10) and (3.11) into (3.3) we obtain

¢_(p,a) = p_A [ 2j e_iko, No #;Jej_''°°'(¢'-_') + ko __, Cj cos(a - aj)eJ_'°:°'('_-°') ".12)-s-V ; op
j=l

and from (3.2) the echowidth is given by yields the echowidth

Cr

-- .= O')_ = --A I _ No ¢o6(a-aj) 2(P_A)28_"J N_ CJ ejk°'° ¢°6(a-a') + ko _-"_ Cj cos(a - ajle jk°," (3.13)
j=l
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3.2 Ogival Boundary

as

where

Following the same discretization scheme used in Section 2.2.3, (3.1) may be written

N_I N_

j=l j=Na I +1

Nal Na

j=l j=Na 1 +1

(3.14)

_, + Ap Go(p, p_p a, aa_,)pap dctap
J ct i

= ,,'[°_'_q-AP_apG°(''Pa_'Ot'Olap)papdOta'a_

(3.15)

(3.16)

(3.17)

in which

Go(p, p_,,, a, a=.)

= -ZH_2_(kox/p_+ p_, - 2ppo,cos(_-_o,) + _ - 2_(psin _- .o, sin_o,))(3.1S)4

and

0

Opo----_Go(p,p°p, a, a_p)

jko H_2)(ko_/p _ + p_p _ 2pp°_ cos(a - aop)+ y_p - 2yq,(p sin a - pop sin a°p))

_/p2 + p_p_ 2pp°pcos(a - aop) + y_p- 2y_p(psina - p°_,sin aop)

[po. - p cos(_ - _o_)+ y_.sin_.](3.19)
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and y_. are the corresponding y-coordinates of the arc F_p.

approximation for the Hankel functions

lim g(.2)(kp),._ , 2_jne-/k_'
p-oo V lrkp'

and the approximation

Using the large argument

(3.20)

Cp + p_p - 2pp_p cos(a - a_p) + y_ + 2yc_(psin a - pop sin a_p)

p - p_p cos(a - a_p) + Yc_ sin a

for p --. c_, the ttankel function simplifies to

for amplitude terms
(3.21)

for phase terms

~, 2f-i7- ¢o.(o_...)_.o..,.o]
V rkop (3.22)

Similarly,

[.y_.] _., _j_ 2_J e-jk,,pe-Jko[-p,, Poo,(a-,_.p)-u¢p ,inc,] cos(a -- a_pX3.23)
V rXop

Substutiting these into (3.15) and (3.16) and performing midpoint integration yields

Ap(P, a, aj) = 4 V rkop (3.24)

,t Y rxop

cos(,_i+ _ - _o.) (3.25)
2

Thus, from (3.14)

4 V "_'_°P c _. -- JAIPa' E _be-Jk°[-P" ¢os(a-a,-_-)-y_, sinai
j=l

N.

-jA2p_'2 E Ce-Jk°[-'°'¢°'(_-_'-'_)-"'in_]
j=No_ +I
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ORIGINAL PAGE IS
OE POOR QUALITY

N_'I A1

j=l

N,, A2 }
j=Na 1 +1

and by substituting this into (3.2) yields the echowidth

/Va 1

a 1] "
j=l

N. ._Z •

+jt,_p°_ E __j,,o[_,,.,oo.(o-,.,-_)-,o_,,_o1
j=N¢, z +1

Nax _ A 1

+koa,po,_ 4e-J_o[-_o,c=(_-_,--_)-_,,,ino]cos(_ + Z"-_')
j=l

N= )2¢o,(_-_,- _ )-_o_ cos(_ d + -_- - a=_
j=Na I +]

(3.26)

(3.27)
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Chapter 4

Results

The scattering patterns of several circular and ogival cylinders for both E- and H-

polarization are shown in the figures to follow. Figs. 4.1-4.3 contain circular geome-

tries both coated and uncoated, while Figs. 4.4-4.6 contain coated and uncoated ogival

structures. The echowidth is computed for each structure and compared to the results

of the series solution for the circular bodies and moment method [5, 4] for the ogival

structures. As seen in all cases, the generated patterns via the hybrid BE/FE-CGFFT

formulation are in excellent agreement with the corresponding data based on the Mei

Series and Moment Method Solutions.
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Figure 4.1: Ez and Hz bistatic echowidth from a perfectly conducting circular cylinder

of radius 0.5A.
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Figure 4.2: Ez and Hz bistatic echowidth from a perfectly conducting circular cylin-

der with a conductor radius of .5)_ and a coating thickness of .05)_ containing material

properties e_ = 5 - j5, #_ = 1.5 - j0.5.
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Figure 4.3: Ez and H, bistatic echowidth from a coated circular cylinder with a conductor

radius of 3A and coating thickness of 0.05A with material properties er = 5 - j5,/zr =

1.5 - j0.5.
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Figure 4.4: Ez and//z backscatter echowidth from a 0.5 x 1A perfectly conducting ogive.
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Figure 4.5: E, and H, backscatter echowidth from a .5 x 1A perfectly conducting ogive

with a 0.05A thick material coating containing the properties Er = 3-jS,#r = 1.5-j0.5.

40



"O

20.0

i0.0

0.0

-10.0

-20.0

-30,0

1 x 4_. Coated Conducting Ogive (E-pol)
.... I .... I " " ""J I .... I : " " " I ....

l BK,'e_-CGFFr

°_ ....... .#_°'°'# #°°°°'° °'° ........ .. °.

.... I .... I .... ] .... I .... I .....

0.0 15.0 30,0 45.0 60.0 75,0

Angle [deg]

90.0

¢Q

O

20.0

10.0

0.0

-I0.0

-20.0

-30.0

1 x 4_ Coated Conducting Ogive (H-pol)
.... I .... I .... I .... I .... I ....

I IIR/lqE-C-'GIq:T

.........MoM

.... i .... i .... i .... i .... f ....

0.0 15.0 30.0 45.0 60.0 75.0 90,0

Angle [deg]

Figure 4.6: E. and Hz backscatter echowidth from a 1 x 4A perfectly Conducting ogive

with a .05A thick material coating containing the properties er = 3- j5,pT = 1.5- j0.5.
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Chapter 5

Conclusions and Future Work

The scattering from targets surrounded by ogival and circular boundaries has been

presented. The finite element method produces the usual sparse sub-matrix, while a

discrete version of the boundary integral results in a dense sub-matrix. The mathematical

boundary enclosing the scattering structure may be judiciously chosen such that tile

boundary integrals are convolutional. As a result, they become amenable to evaluation

via the FFT and leads to an O(N) storage requirement. Among the circular and ogival

boundaries considered, the circular boundary satisfies the above requirements. The

ogival boundary results in convolutions only when the source and observation points are

along the same arc, while the non-convolution_al cross-terms must be stored efficiently

to guarantee the required storage requirement. When considering circular and ogival

structures, the associated circular and ogival boundaries are usually conformal to the

structure, thus providing an additional reduction in the number of unknowns.

To validate the method and associated computer code, scattering patterns of several

circular and ogival structures were given and compared with data generated by proven

methods.
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Figure5.1: Three-dimensionalfinite-cylinderenclosure.

Thefundamentalpurposeof thisworkwasto exploreformulationsthat leadto O(N)

storage requirements when employed for three-dimensional simulations. The presented

hybrid technique may prove useful when the surrounding boundary is chosen such that

most of the terms of the boundary integral are convolutional. The remaining "cross-

terms" however, must be stored efficiently and some sort of interpolation should be used

for their evaluation. Based on this study, a suitable three-dimensional enclosure is a

truncated circular cylinder as illustrated in Fig. 5.1.
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